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ANALYSIS OF THE ACCURACY OF SOLUTIONS OF THE TWO-DIMENSIONAL 

HEAT-CONDUCTION PROBLEM 

N. V. Kerov UDC 536.2 

The accuracy of solutions of the two-dimensional inverse heat-conduction problem 
is investigated. Exact and perturbed values of the temperature on the inner 
boundary are used as initial data. 

Study of the nonstationary heating of structural elements, which are bodies of spherical 
and cylindrical shape and subjected to a high-temperature flux, requires knowledge of the ex- 
ternal thermal loading conditions. The inverse problem, used to determine the conditions on 
the outer boundary according to the temperatures measured on the inner boundary, is examined 
below. In a number of cases it is necessary to take a two-dimensional heat-propagation model 
for bodies of spherical and cylindrical shape. For example, the two-dimenslonality is taken 
into account for an intensive change in the free-stream flux parameters along the body gen- 
erator and in the presence of anisotropy of the thermophysical properties [I]. A sufficient- 
ly large quantity of algorithms for solving inverse heat-transferproblems isknown. Algo- 
rithms have been developed for solving inverse problems in linear and nonlinear formulations; 
algorithms taking into account structural changes in the material. These are mainly problems 
in a one-dimensional formulation which are justified in many cases of practical importance. 
For instance, if the installation of special heat-flux sensors is possible structurally in 
geometrically complicated spherica! or cylindrical bodies, then in these cases thereis no 
need to solve tedious multidimensional inverse problems. The determination of heat fluxes 
by using known heat-flux sensors is based on the solution of one-dimensional inverse heat- 
transfer problems. However, there exist few examples of practical investigations of the heat- 
transfer processes in constructions when the one-dlmensional models do not adequately de- 
scribe the actual physical processes and the installation of the above-mentioned heat-flux 
sensors ~s not possible. Spherical and cylindrical shells of small radius [2] are an ex- 
ample of such constructions. If there is a strict approach to the physical problem of heat- 
ing, then a three-dimensional heat conductivity model is necessary to determine the external 
thermal boundary conditions for bodies of spherical and cylindrical shape. Unfortunately, a 
substantial growth of the calculations, resulting in large electronic computer time expendi- 
ture for the solution of the inverse problem, hinders the development of algorithms of in- 
verse problems in a three-dimensional formulation. If the multidimensional nature of the 
heat conductivity in a cylindrical body is caused mainly by small radii of curvature, then 
the two-dimensional model describes the heat-conduction process well for a negligible heat- 
flux gradient along the cylinder generatrix. A two-dimensional heat-conduction model is also 
realized in the axisymmetric flow around a spherical body and the problem to determine the 
thermal boundary conditions can be solve in a polar coordinate system. 

Let us consider a two-dimensional inverse boundary heat-conduction problem for a body of 
cylindrical shape. The heat flux qi(% ~) is delivered to the outer surface, where T is the 
time, ~ is the angle of rotation in the cylindrical coordinate system 0, r, ~. As a result 
of the action of heat flux, a temperature field T(r, ~, T) is realized in the body. We as- 
sume that the boundaries ~re heat insulated at ~=0, ~=~h and r = Rex. In this case the 
two-dimensional inverse heat-conduction problem is written as follows: 
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Fig. 2. Restoration of the heat-flux density with two maximums to the external 
body surface for AFo = 0.02 (the plane T, 0, q; the solid curves are the model 
heat flux, T in sec): a, I) 9 = 45~ b, 2) 18; c, 3) 0; 4) 90. 

aTa~ ara (L(T) aT ) ~  ~,(T) aT - ~ (  e,.~/aT~ c (r) - +-- --+ | , 
�9 r Or 

Rex<r<R, O<q~<q~k, O < T ~ ' r  m , 

T(r, m, O)=~(r, m), Rex<~r~R, O<-~m<mh, 

where C(T) is the specific heat, and %(T) is the heat conduction. 

The boundary conditions are 

( I )  

(2) 

q2(Rex., % ~)= aT(Rex, ~, ~) = O, (3) 
ar 

q~(r, O, ~):-- aT(r, O, ~) _ O, (4) 
am 

q~(r, qD h, ~)----- aT(r, ~Ph, T) = 0 ,  O < ~ x , , .  (5) 
Oqo 

The temperature on the boundary r = Rex 

T(Rex, ~, T)=T*(% ~ ) ~ ( %  T), 0 ~ < ~ < ~ ,  0 < ~ < % ~ .  (6) 

is the initial data for solution of the problem formulated. The sign-- ~ in (6) means that re- 
sults of measuring the temperature ~(~,~), obtained during a high-temperature experiment and 
which differ from the exact values of the temperature T*(%T) by the magnitude of a certain 
integral error ~L2 are used as initial data. The desired heat-flux density delivered to the 
external surface of the cylindrical bodv is 

q~(cp, ~ ) = - - ~ ( T )  aT(R, % -v) , O ~ < m < ~ h ,  O < ' ~ < ' ~ m .  
Or 

(7) 

Let us examine one of the particular cases when 

(T)/C (T) = a = const. (8) 
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Fig. 3. Restoration of the heat-flux density with two maximums to the external 
body surface for AFo = 0.02 (the plane ~,, 0, q, solid curves are the model heat 
flux, and ~, in degrees): a, I) T = 0.05 sec; b, 2) 0.03; c, 3) 0.08; d, 4) 0,01. 

Fig. 4. Dependence of error in the solutions of the two-dimensional problem6Em , 
kW/m 2, on the number of difference mesh nodes n=n~Xn~ (i~ and on the number of 
temperature measurement points on the body interior surface Na/N~ (b) : I) n d = 
3; 2) 5. 

A formulation of problem (1)-(6) under condition (8) is proposed in [2]. A description is 
given there for the algorithm solving the two-dimensional inverse heat-conduction problem 
which is based on an extremal formulation using the method of conjugate gradients. The meth- 
od of variable directions is here used for the calculations. Moreover, the specific general- 
ity of the method permits making the formulation of two-dimensional inverse problems compli- 
cated, for instance, by inserting different nonlinearities. Individual results of solving 
the two-dimensional heat-conduction problem by using exact and perturbed initial data are 
presented in [3]. As a rule the algorithms of inverse problems are investigated by using 
special methodological examples. Since the problem under consideration is solved by a num- 
erical method, then it would be natural to compare them with analytic solutions of special 
methodological problems to determine the accuracy of the solutions obtained. But it is suf- 
ficiently difficult to select an example with an analytic solution for inverse problems in a 
two-dimensional formula. Consequently, the accuracy of the solution of this inverse problem 
was investigated by using special numerical experiments. Model thermal fluxes were used, 
whose laws of variation in space and time were close to the real:thermal loading. For such 
model heat fluxes, the temperatures on the external surface were determined by using known 
methods. Consequently, a complex of initial data for the solution of the two-dimensional in- 
verse heat-conduction problem and control values of the desired solutions were obtained. Dur- 
ing the investigation it would be necessary to clarify what laws of variation of the heat- 
flux density in space and time can be restored by using the solution of the two-dimensional 
inverse heat-conduction problem with acceptable accuracy for practice. Parameters of the dif- 
ference mesh and the least number of fixed points with known temperature needed on the inter- 
nal body boundary for which the necessary accuracy in the solution of the inverse problem is 
achieved were estimated from this experiment. This latter is of interest from the practical 
viewpoint. Since a two-dimensional inverse problem is solved, then it is therefore necessary 
to have initial data distributed not only in time but in the space coordinate as well. If the 
temperature is measured by using a thermocouple~ say, then the quantity of measurements in 
the space coordinate will be directly related to the quantity of thermocouples installed on 
the body interior surface. It can be said that the quantity of thermocouples should not be 
less than three since only in this case is the information about the temperature of both the 
inner and the side boundaries of the body taken into account. A definite answer to the ques- 
tion of the quantity of temperature measurement points can be given just by a specially for- 
mulated numerical experiment. 

The fact that experimental values of the temperature were used in determining the ther- 
mal fluxes by using inverse heat-conduction problems was indeed taken into account in the ex- 
perimental investigation performed. It is known that the temperature measured during the ex- 
periment is under definite assumptions, the sum of useful information and different errors 
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associated with the imperfections of the measuring and recording apparatus. Hence, the per- 
turbed values of the temperature in both space and time are ordinarily used as initial data 
in the solution of two-dimensional inverse-conduction problems. In practice, the signal be- 
ing recorded in an analysis of experimental information is represented in the form of the 
sum of the useful signal and a random component. The random component was generated by a 
pseudorandom number sensor. Two random number distribution laws were utilized here, uniform 
and normal. 

Analysis of the results of an experiment using exact and perturbed initial data to solve 
the two-dlmensional inverse heat-conductlon problem showed that the method of determining the 
heat-flux density delivered to the external surface of a cylindrical body by means of the re- 
sults of measuring the temperature on the internal heat insulated surface yields good results 
for sufficiently complicated thermal loading laws. A space--time thermal loading law (coordi- 
nate system 0, T, @, q)is displayed graphically in Fig. i on the external boundary of a cyl- 
indrical body in the T, 0, q plane. The law of delivered heat-flux density variation has an 
analogous representation in the @, 0, q plane. A more complex dependence of the heat flux is 
shown in Figs. 2 and 3. Here, the heat-flux density in the plane 9, 0, q already has two max- 
imal values. In this latter case it would be necessary to find the solution of a two-dimen- 
sional inverse heat-conductlon problem that is a dependence describing the low-frequency os- 
cillatory process. Despite the perturbation of the initial data, which reaches 5% of the max- 
imal value of the temperature, the method under investigation permitted restoration of the 
model heat-flux value with sufficiently high accuracy. 

Results on an investigation of the influence of the difference mesh parameters of a fi~ 
nite-dlfference method used in solving the inverse problem are of interest. An~ inverse ~wo- 
dimensional heat-conduction problem was solved on a difference mesh with a different quantity 
of nodes surlng the experiment. The solutions obtained were compared with the model heat 
flux, The accuracy of the solutions was estimated according to the errors 

6e~ = ~ G  2 i = 1, 2 . . . . .  m, 

qt,i' ] = 1 ,  2 . . . . .  k, 

where ~r is the variance of the solutions inverse problem for the model heat flux, 

The fundamental results are represented in Fig. 4. As is seen from the figure, two- 
dimensional inverse problems in the formulation under consideration should be solved on a 
difference mesh with n = 800-1000 nodes. A further increase in the quantity of nodes does 
not result in a substantial increase in the accuracy of the inverse problem solutions ob- 
tained. 

It was noted above that the question of the quantity of thermocouples installed to mea- 
sure the temperature on the body internal surface is important in a computational experiment- 
al determination of the deliverable heat-flux density by the methodology using the solution 
of a two-dimensional inverse heat-conduction problem. In this connection, the dependence of 
the accuracy of the solution of the two-dimensional inverse heat-conduction problem on the 
quantity of points with known temperature on the body interior boundary must be determined. 
The results of the investigation performed showed that the quantity of temperature measure- 
ment points needed from the viewpoint of the accuracy of solving the two-dimensional inverse 
heat-conduction problem fluctuates from n d = 3 to n d = 9 (Fig. 4). It should be noted that 
the quantity of measurement points n d = 5 turns out to be more acceptable for the majority 
of considered modifications of the solution of two-dimensional problems. 

NOTATION 

q, heat-flux density; 0, r, ~ , polar coordinate system; R, Rex, external and internal 
surface radii for the cylindrical body; ~ , greatest value of the variable T, time; Tm, 
greatest value of the variable T; T, temperature; C, coefficient of volume specific heat; 
%, heat-conduction coefficient; a, thermal diffusivity coefficient; ~, temperature measured 
in experiment; n, number of difference mesh nodes; nd, number of temperature measurement 
points; AFo, Fourier number step; ~Em, integrated error; and ~2, variance. 
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OPTIMAL PLANNING OF MEASUREMENTS IN NUMERICAL EXPERIMENT 

DETERMINATION OF THE CHARACTERISTICS OF A HEAT FLUX 

E. A. Artyukhin and S. A. Budnik UDC 536.24 

The authors present an algorithm and analyze results of optimization of a tem- 
perature measurement scheme for solving inverse heat-conduction boundary prob- 
lems. 

In experimental investigations and the development of thermal regimes for various ther- 
mally loaded engineering items, there has recently been wide use of methods of diagnosing 
heat fluxes based on solving inverse heat-conduction boundary problems (IBP) [I]. The use 
of these methods requires careful analysis of the computing properties of the IBP solution 
algorithm (e.g., rate of convergence, stability, errors in recovering the desired functions) 
and determining the conditions for conducting the temperature measurements to achieve maxi- 
mum reliability of results of the diagnosis. 

The mathematical modeling data show that the accuracy of recovering the boundary thermal 
conditions can be increased by choosing the location of the thermal sensors in the test body, 
and also by solving the IBP in a redefined formulation [2]. Here the question arises of the 
baseline choice of the number of thermal sensors and their rational location in the specimen. 
The present paper analyzes this problem from the standpoint of theory of an optimal experi- 
ment [3, 4]. 

We consider a planar unbounded plate of thickness b in which the heat-transfer process 
is described by the following equation of unsteady heat conduction with boundary conditions 
of the second kind: 

aT O (E(T ) OT ) 
C(T) a~=- Ox ~ , O<x<b, o<,<~cm, ( i )  

T(x, o)= %(x), o~<x<~b, (2) 

- -  ~ (7" (o, ~)) oT  (o, ~:) 
Ox : q~ (x), (3) 

-- ~ (T (b, , ))  OT (b, ~) = q~ ('0. 
Ox (4) 

The IBP consists of defining the heat-flux density on one of the boundaries, e.g., 
q1(T), or simultaneously on both boundaries, q~(T) and qa(T), using the mathematical model of 
Eqs. (1)-(4) and the measure~ temperature data at a certain limited number N of points of the 
plate with coordinates x=X~ i=l, N: 

TeXP(x~, ~)= f~(z), i =  1, N. (5) 

Efficient iterative computing algorithms for recovering the above characteristics have been 
proposed, for example, in [i, 2], in which the approximate solution of the inverse problem is 
determined from the uncoupling condition: 
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